Difference between Yolo11n and Yolo11s

Hello!

Thank you so much for you reply. It realy was helpful for me.

I did everything as you indicated.

My code is:

model = dg.load_model(

model_name=“bestYolo11s–640x640_quant_hailort_multidevice_1”,

zoo_url = “aiserver://” ,

inference_host_address=“192.168.31.173:8778”,

token=‘<>’

)

model.output_confidence_threshold = 0.001

model.output_nms_threshold = 0.7

model.output_max_detections = 300

model.output_max_detections_per_class = 300

classmap = [1]

# Create evaluator

evaluator = ObjectDetectionModelEvaluator(

model,

classmap=classmap,

show_progress=True

)

# Folder structure should be: /images/cat/, /images/dog/, etc.

image_dir = “F:/YOLO/RamNew/HAILO/Win11VENV/degirum-windows/test”

coco_json = “F:/YOLO/RamNew/HAILO/Win11VENV/degirum-windows/test/_annotations.coco.json”

# Run evaluation (no annotation file required)

results = evaluator.evaluate(image_dir, coco_json, max_images=0)

print(“COCO mAP stats:”, results[0])

And this is my results:

COCO mAP stats: [0.75327223 0.99623725 0.95059774 0.4 0.68988011 0.78812285
0.47962382 0.81159875 0.81159875 0.4 0.75 0.84009009]

The metrics are more then I expected and more then described here Hailo guide: Evaluating model accuracy after compilation

  • AP: Overall mean Average Precision

  • AP50: Precision at IoU ≥ 0.5

  • AP75: Precision at IoU ≥ 0.75

  • AP_small, AP_medium, AP_large: Size-specific precision

  • AR: Recall statistics

Here I can see 7 metrics. In my case there 10 metrics.
How can I exlore the last 3 metrics?

Thank you for advance!